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Traditional Sources of Performance
. a— Improvement are Flat-Linin
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e New Constraints

— 15 years of exponential
clock rate growth has ended
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« But Moore’s Law
continues!

— How do we use all of those 1,000
transistors to keep
performance increasing at
historical rates?

— Industry Response: #cores
per chip doubles every 18
months instead of clock
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. 4axx4 Growth in HPC System Concurrency
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Processors

Must ride exponential wave of increasing concurrency for forseeable future!
» [ = ' -~
. Jou will hit 1M cores sooner than you think! /\I
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Application Community’s

. Response to Technology Trends

« Parallel computing has thrived on weak-scaling for
past 15 years

« Flat CPU performance increases emphasis on
strong-scaling

 Workload Requirements will change accordingly

»
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Concurency will increase proportional to system scale (3-5x
increase over NERSC-5)

Timestepping algorithms will be increasingly driven towards
implict or semi-implicit stepping schemes
Multiphysics/multiscale problems increasingly rely on spatially
adaptive approaches such as Berger-Oliger AMR

Strong scaling will push applications towards smaller messages
sizes — requiring lighter-weight messaging
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W ERSC NERSC Response To Trends
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« Parallel computing has thrived on weak-scaling for
past 15 years

« Flat CPU performance increases emphasis on
strong-scaling

« NERSC-6 Benchmarks changed accordingly

— Increased concurrency 4x over NERSC-5
benchmarks

— Input decks emphasize strong-scaled problems
— Emphasis on implicit methods

— New AMR benchmark

— New UPC benchmark
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Materials Science
Planewave Density Functional Theory (DFT)
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"X Density Functional Theory (DFT) Algorithm

Kohn-Sham formalism for computing electronic structure from first

principles (DFT Method)

— Most common implementation is based on expanding the quantum
wavefunction into plane-wave (fourier) components

— This is the method employed by VASP, PARATEC, and Qbox

Dominant phases of planewave DFT algorithm

— 3D FFT
« transforming between real space
and reciprocal space
* O(Natoms?) complexity
— Subspace Diagonalization
* O(Natoms?®) complexity
— Orthogonalization
» dominated by BLAS3
« ~0O(Natoms?) complexity

— Compute Non-local pseudopotential

* O(Natoms?®) complexity
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Other PDE
Classical MC 5%
3%

Classical MD
6%

Quantum MC
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GW+BSE
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Density Functional
Theory (DFT)
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For smaller atomic systems (~600-1000 atoms)
— BLAS dominates at lower concurrencies
— 3D FFT tends to dominate the computation at high concurrency
* Due to low computational intensity and small message size (NSF Track-2 bench)
« Message size can be increased by expending more memory/processor
For larger atomic systems (>1k atoms), the O(N3) complexity of
orthogonalization and computing non-local pseudopotential will
dominate

For O(N3) complexity, moving from teraflops to petaflops only gets
you from 1k atoms to 4k atoms.
— not very impressive given the amount of hardware!

— Good news is that FLOP rates will be very impressive given increased
domination of highly localized BLAS3 operations (eg QBox example)

For this reason, conventional O(N*3) DFT will be increasingly
supplanted by O(N) methods for Petaflop scale calculations!
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m Anatomy of an O(N) DFT method

NNNNNNNNNNNNNNNNNNNNNNN (LS3DF as an example)
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Total energy of a system can be decomposed into two parts

— Quantum mechanical part:
« wavefunction kinetic energy and exchange correlation energy
* Highly localized
« Computationally expensive part to compute
— Classical electrostatic part:
« Coulomb energy
* Involves long-range interactions
« Solved efficiently using poisson equation even for million atom systems

LS3DF exploits localization of quantum mechanical part of calculation
— Divide computational domain into discrete tiles and solve quantum mechanical part
— Solve global electrostatic part (no decomposition)
— Very little interprocessor communication required! (almost embarrassingly parallel)

— Result is O(Natoms) complexity algorithm: enables exploration of larger atomic
systems as we move to petaflop and beyond.
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Climate
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= Cloud System Resolving
O Climate Simulation

CCM3 @ T42 CCM3 @ T170
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* Requires transformational change in
science not feasible using current approach
— The biggest source of climate model
errors is poor cloud simulation,
especially tropical convection
— At ~1 km horizontal resolution, cloud
systems can be resolved

latitude

latitude

* DOE Investment in Exascale Computing
— Climate change is leading justification for
general purpose exascale system
— Not achievable via extrapolation of current
approach

— UN WMO Climate Modeling Summit:
1km models are the top priority

* Requires substantial code redevelopment to
develop cloud-resolving climate model
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, Global Cloud System Resolving
anon encrey seseancr Climate Modeling

Cloud-scale processses Meso-scale statistics
Well understood Poorly understood

— Global scale

This is where
parameterization
comes in. Courtesy Prof. David Randall, Colorado State University
The UN WMO cites the need for Cloud Resolving Models as a Top Priority
(cannot be accomplished without 107 improvement in computational capabi%
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r rxxg Global Cloud System Resolving M
e are a Transformational Chang

I
8000 10000 12000 14000

1km 25km 200km
Cloud system resolving Upper limit of climate Typical resolution of
models models with cloud IPCC AR4 models _
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Climate Model

WERSC New Approaches for Massive Parallelism
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« Existing Latitude-longitude based algorithm advection algorithm breaks
down significantly before 1km scale!

— Grid cell aspect ratio at the pole is 10000!
— Advection time step is problematic at this scale
« Ultimately requires new discretization for atmosphere model
— Must expose sufficient parallelism to exploit power-efficient design
— Partner with CSU/Randall Group to use the Icosahedral Code
— Uniform cell aspect ratio across globe
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. aX4 Requirements: 1km Climate Model
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Must maintain 1000x faster than real time for practical climate simulation
« ~2 million horizontal subdomains
100 Terabytes of Memory

— 5MB memory per subdomain

 ~20 million total subdomains
— 500Mflops sustained per domain
— Nearest-neighbor communication 250GB/s

« NERSC supports projects developing these new discretizations
— GFDL Cubed Sphere, CSU Icosahedral model
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IPCC ARS Timeline
SCIENTIFIC COMPUTING CENTER COi nCident With N ERSC‘G

2006 2006 2007 2008 2009 2010 2011 2012 2013

“The carbon cycle version of CCMS4 will include the additional bio-
geochemistry, indirect aerosol and land ice components, and the short-
term climate simulations will have considerably enhanced atmosphere
resolution and, potentially, include the chemistry component. [The]
carbon cycle CCSM 4 will be a factor of about five times the CCSM 3 in
computing cost. . .. Doing all the proposed IPCC AR 5 runs will stretch
the CCSM computing resources to the absolute limit.”

Peter R. Gent:
CCSM4 Implementation Plan
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Fusion
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“am Fusion: Impact of ITER
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« Fusion science has been dominated by scaling 17 IR
up first-principles models of specific o | emaee
phenomena " '

* ITER development requires full-device modeling
capability by 2012

— For shot planning and device control
— Requires Code-coupling, Multi-scale multiphysics

— Uncontrolled discharge could damage $12B
device!

 Requires new code and algorithms to span 12 orders magnitude
(Keyes/Jardin)

 AMR to cover 3 orders of magnitude (time and resolution)

« Implicit solvers to cover 4 orders magnitude (time)

* Increased parallel scaling to cover another 3 orders magnitude
« 2 orders magnitude from higher order elements

 These codes are still in development (and need a platform to support
development)
« SciDAC developing pairwise code coupling -

= . . . . . . frrr o
@ ‘;’;’,tgggsp will focus on broader coup1ll8ng for full device modeling capablﬁm
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L 4AX3 Fusion Time and Length Scales
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ELECTRON TRANSIT SAWTOOTH CRASH ENERGY CONFINEMENT
TURﬁULENCE ,
B ISLAND GROWTH  CURRENT DIFFUSION
Qcc-l (DLH Qci-l TA 1
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Single frequency Neglect.displacement | Neglect displacement | Neglect displacement

current, average over
gyroangle,*(some)
with electrons

and prescribed
plasma background

current, integrate over
velocity space, neglect
electron inertia

| current, integrate over
velocity space, average
over surfaces, neglect
ion & electron inertia
RF Codes { Gyrokinetics Codes | Extended MHD Codes | Transport Codes
wave-heating and | ‘ .
current-drive

turbulent transport discharge time-scale
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L 4AX3 Fusion Time and Length Scales
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ELECTRON TRANSIT SAWTOOTH CRASH ENERGY ci)NFINEMENT
TURBULENCE ,
Qcc-l mLH-l Qu 1 Ty ISLAND GROWTH CURRENT1 DIFFUSION
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Single frequency

and prescribed
plasma background

RF Codes
wave-heating and
current-drive

current, average over
gyroangle,*(some)
with electrons

Gyrokinetics Codes

turbulent transport

: current, integrate over
' velocity space, neglect
. electron inertia

Extended MHD Codes

: device scale stability

N eglect displacement
current, integrate over
velocity space, average
over surfaces, neglect
ion & electron inertia
Transport Codes

discharge time-scale

* Gyrokinetic and MHD codes dominate workload
GTC (10%) & GEM (11%) PIC codes dominate Gyrokinetic Codes

— M3D (10%) & NIMROD (12%) dominate Extended MHD Codes
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X4 Emerging Workload Requirements
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 Applying computation only where needed

— AMR: multiscale/multiresolution physics

« Load balancing issues

 Locality constraints for prolongation and restriction

« Many very small (oddly-sized) messages for interconnect
— Sparse Matrix: Don’t compute on non-zeros

* Very small messages sizes and load balance issues

 Emerging issues with existing applications
— Implicit Methods

» Vector inner product required by Krylov subspace algorithms is
hampered by latency-bound fast global reductions at massive
parallelism

— Climate Models

* When science that depends on parameter studies and ensemble runs,
capacity and capability are intimately linked!

* /O Intensive workloads
— Growth in experimental and sensor data processing
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Scaling Fusion Simulations Up to ITER

<

name symbol | units CDX-U DIlI-D |ITER
Fleld B, Tesla | 0.22 1 53
Minor
radius a meters 292 67 2
Temp. T, keV 0.1 2.0 8.
Lundquist| s 1x104 | 7x108 | 5x108
growin time| TaS"? s | 2x10 | 9x103 | 7x10-2
Layer 172 -3 4 5
thiCkSF'IGSS asS m 2><1D 2><10 8><1O
ZONES I Np<NgxN, 3x108 | 5x1010 | 3x1013
CFL | AXIV 5 P P
timestep (Explicih) S 2x107 [ 8x101" | 7x10
Space- 12 20 24
tinﬁ}e ots 6><'_‘110 1x10 6x10
012 needed J
Office of Slides from David Keys -- (explicit
Science  Altered some for NERSC6 2ouniform
R

International
Thermonuclear
Experimental
Reactor

in Cadaraches,

France,
operational by

2017 ~




Software Hardware
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JERSC How to Increase Efficiency?
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. In@ed processor speed and efficiency
* Increased concurrency

* Higher-order discretizations
— Same accuracy can be achieved with many fewer elements

* Flux-surface following gridding
— Less resolution required along than across field lines
« Adaptive gridding

— Zones requiring refinement are <1% of ITER volume and
resolution requirements away from them are ~102 less severe

* Implicit solvers
— Mode growth time 9 orders longer than Alfven-limited CFL




r xxa |llustrations from Computational MHD
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« M3D code (Princeton)

— multigrid replaces block Jacobi/ASM preconditioner for
optimality
— new algorithm callable across Ax=b interface

 NIMROD code (General Atomics)
— direct elimination replaces PCG solver for robustness
— scalable implementation of old algorithm for Ax=b

Y745, Office of /r\| ’“
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W=rsc Computational MHD

NATIONAL ENERGY RESEARCH
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* NIMROD code: Direct Elim. for
robustness

— Fourier transforms in toroidal direction

— High-order finite elements in 2D poloidal
crossplanes

— Sequence of complex, nonsymmetric
linear systems with 10K-100K unknowns
in 2D (>90% exe. Time)

— Uses SuperLU (parallel sparse direct solver
benefits from efficient support of very small
messages sizes)

« M3D code: multigrid for optimality X
— Finite differences in toroidal direction

— Unstructured mesh, hybrid FE/FD
discretization with CO elements in 2D
poloidal crossplanes

— Sequence of real scalar systems (>90%

R\

exe. Time) c/o S. Jardin, et al. .
— algebraic multigrid (AMG) from Hypre N

(multigrid benefits from good support of R
Office of flne'gralned rrrrrr\rl |/|}
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XGC Strong Scaling :

131M lons and electrons, 200K grid

SciDAC example
(S. Ethier)

Phoenix (Cray X1)
4—a IC GFDL (SGI Altix)

Thunder (IA64+Quad)
w—y NEC SX-8 (HLRS)
m—au Seaborg (IBM SP3)

| | | | | | ]
64 128 256 512 1024 2048 4096 8192 16384 32768

1 0o 10,00
Mumber of Cores

FSP example
(C.S. Chang)

1E+07 =

! Compute Power of the Gyrokinetic Toroidal Code

. Number of particles (in million) moved 1 step in 1 second
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- ,_,-‘f-’i = 100 m==m Earth Simulator(05)
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Number of processors
S. Ethier, PPPL. Apr. 2007
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r (Txxa Resistive MHD: Nonlinear Implicit Model
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* Magnetic reconnection: the breaking and

reconnecting of oppositely directed
magnetic field lines in a plasma,
replacing hot plasma core with cool
plasma, halting the fusion process

* Replace explicit timestepping with

implicit Newton-Krylov from SUNDIALS
with factor of ~5x in execution time

Explicit vs. Implicit Timings (3x to 5x faster)
T T

-8 Explict
| Implicit

Wall Clock Time (s)
=

10°

B4x32 128x54 256x128 512x258

J. Brin et al.,
/ Office of
h" Science

U.S. DEPARTMENT OF ENERGY
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12.75
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Max Reconnection Rate

Mesh Size
“Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 1U6 (2UU1) 3/15-3/13/—“\‘
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x 1073 Reconrection Rate Histeries for Various Lundquist Numbers
6 T T T T

—— explicit, S=1000
Q  implicit, S=1000
—— explicit, S=2000
1l o implcit, S=2000

explicit, S=10000
x__implicit, S=10000

0 5 10 15 20 25 30 35

time

c/o D. Reynolds, et al.
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Memory Bandwidth and Interconnect
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&Ea  Sensitivity to Memory Bandwidth
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Single vs. Dual Core Performance
(wallclock time at fixed concurrency and problem size)

4000

3500

3000
()]
£ 2500
£
~ OXT3 SC
g2
2 000 W XT3 DC
S 1500

1000

N ]:]:]ﬁ

il s
CAM MILC GTC  GAMESS PARATEC PMEMD MadBench BB3D Cactus
application code

Poor compiler performance makes applications underutilize mem bandwidth
Re(s)%l_t: relatively insensitive to halving memory bandwidth f“\l \
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Time spent dominated by
SCIENTIFIC COMPUTING CENTER “Other” (mOStIy Iatency StaIIS)

Time Spent in Application
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c
o
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£
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= O memory contention
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20% -

00/0 T T T T T T
CAM MILC GTC GAMESS PARATEC PMEMD MadBench
Application
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TS Hand-Tuned Kernels Can
;“c?mf@;cc” ReaCh Peak (and BW Ceiling)

Total Gflop/s

5.0 {Clovertown $ Bypass | 18.0 |Barcelona $ Bypass Victoria Falls Collab Thrd
SIMD SIMD 14.0 - 1 'Prefetch
4.5 1 Prefetch 16.0 - $oi Prefetch
. T/$ Block T/$ Block T Reorder
g Reorder 14.0 - Reorder = T/$ Block
3.5 - Padding ' /Padding 10:0° & B Naive
sve M Naive 2 120 NUMA :
=] o M Naive
2 10-0 . — Q 8.0 - ]
2.5 1 ] o
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2.0 - 3 80 : & 6.0 4
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« Application studies provide insight to
requirements for Interconnects (both on-
chip and off-chip)

— On-chip interconnect is 2D planar
(crossbar won'’t scale!)

— Sparse connectivity for dwarfs; crossbar is
overkill

— No single best topology
« A Bandwidth-oriented network for data
— Most point-to-point message exhibit
sparse topology & bandwidth bound

« Separate Latency-oriented network for
collectives

— E.g., Thinking Machines CM-5, Cray T3D,
IBM BlueGene/L&P

« Ultimately, need to be aware of the on-chip
interconnect topology in addition to the off-
chip topology

Adaptive topology interconnects (HFAST)

Intelligent task migration?

W Office of
h( Science
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Interconnect Design Considerations
for Massive Concurrency

FVCAM1D Point-to-Point Communication (bytes) GTC Point-to-Point Communication (bytes)
-

Processor
Processor

150
Processor

FVCAM2D Point-to-Point Communication (bytes)

200 250

3
Processor
Cactus Point-to-Point Communication (bytes|

Processor
Processor
Processor

100

50 100 150
Processor

200 20 10 20 30 40 50 60
Processor

SuperLU Point-to-Point Communication (bytes) PMEMD Point-to-Point Communication (bytes)

Processor

150
Processor Processor



Interconnects
EEEEEEEEEEEEEEEEEEEEEE Need For High Bisection Bandwidth
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« 3D FFT easy-to-identify
as needing high bisection

— Each processor must send
messages to all PE’s! (all-to-all)
for 1D decomposition

— However, most implementations
are currently limited by overhead
of sending small messages

— 2D domain decomposition
(required for high concurrency)
actually requires sqrt(N)
communicating partners (some-
fo-some)

e Same Deal for AMR

— AMR communication is sparse,
but by no means is it bisection
bandwidth limited

S Office of
« Science
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PARATEC Point-to-Point Communication (bytes)
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